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Abstract. In this paper, a solution algorithm to fuzzy multiobjective
integer nonlinear fractional programming problem (FMOINLFP) is sug-
gested. The problem of concern involves fuzzy parameters in the objective
functions. In order to defuzzify the problem, the concept of α-level set
of the fuzzy number is given and for obtaining an efficient solution to the
problem (FMOINLFP), a linearization technique is presented to develop
the solution algorithm. In addition, an illustrative example is included to
demonstrate the correctness of the proposed solution algorithm.
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1. Introduction

Fuzzy integer linear and nonlinear fractional programming problems with mul-
tiple objective is an important field of research and has not received attention as
much as did to fuzzy multiple objective linear and nonlinear fractional programming
problems.

Integer linear fractional programming problem with multiple objectives (MOILFP)
is an important field of research and has not received as much attention as did mul-
tiple objective linear fractional programming. In [3], an exact method for discrete
multiobjective linear fractional optimization has been developed using a branch and
cut algorithm to generate the whole integer efficient solutions of the MOILFP prob-
lem.

Literature survey reveals wide applications of fractional programming in different
areas ranging from engineering to economics. For comprehensive review of the work
in this filed, we refer to [13].
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In our previous paper [12], we have presented an algorithm to solve multiobjective
integer linear fractional programming problem (FMOILFP) with fuzzy coefficients in
the right-hand side of the constraint functions. The basic idea of the computational
phase of the suggested algorithm in [12] was based mainly upon a modification of
Isbell-Marlow method together with the branch and bound technique.

In this paper, an attempt is made to study multiobjective integer nonlinear frac-
tional programming problem (FMOINLFP) with fuzzy coefficients in the objective
functions. The problem formulation is introduced in Section 2. Fuzzy notations and
definitions used throughout this paper are presented in Section 3. In Section4, a
linearization technique is described. An algorithm to solve problem (FMOINLFP)
is developed in Section 5. An illustrative example is given in Section 6 to clarify the
solution algorithm. Section 7 provides some concluding remarks.

2. Problem Formulation

The purpose of this paper is to develop a solution algorithm for solving the fol-
lowing multiobjective integer non-linear fractional programming problem involving
fuzzy parameters in the objective functions [FMOINLFP]:

(2.1) (FMOINLFP) :





max z1(x) =
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

,

max z2(x) =
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

,

...

max zk(x) =
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

,

Subject to

x ∈ M.

In problem (2.1), c, d ∈ Rn for each objective l, l = [1, 2, ..., k] and αiβi ∈ R. The
set M is defined as the feasible region and might be, for example, of the form

(2.2) M = {x ∈ Rn | Ax ≤ b, x ≥ 0 and integer}

where A is an m × n real matrix, x is an n-vector of integer decision variables, b is
an m-vector of the constraints right-hand sides, Rn is the n-dimensional Euclidean
space and T denotes the transpose.

It is assumed that θ̃li is an k×n real matrix of fuzzy parameters and for simplicity
let

θ̃ =




θ̃11 θ̃12 . . . θ̃1n

θ̃21 θ̃22 . . . θ̃2n

. . . . . . . . . . . .

θ̃k1 θ̃k2 . . . θ̃kn


 .

Moreover, M is a compact set and that dT
lix + βl > 0 for all x ∈ M is nonconvex

polyhedron in general.
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The set of constraints Ax ≤ b, x ≥ 0 will be denoted throughout this paper
by MR and can be obtained by dropping the integer requirement on the decision
variables xJ for all J = 1, 2, ..., n in (2.2) above.

In what follows, an equivalent fuzzy multiobjective nonlinear fractional program-
ming problem associated with problem (2.1) can be stated with the help of the
cutting-plane technique [6, 8] and may be written in the form:

(2.3) (FMOINLFP) :





max z1(x) =
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

,

max z2(x) =
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

,

...

max zk(x) =
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

,

Subject to

x ∈ [M ]

where [M ] is defined as the convex hull of the set of feasible solutions M defined by
(2.2) and the point to be noted here is that the efficient solution of problem (2.1) is
the same efficient solution of problem (2.3), (see [10]).

In what follows, we consider the equivalent fuzzy multiobjective nonlinear frac-
tional problem (2.3) in the following form:

(2.4) (FMOINLFP) :





max z1(x) =
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

,

max z2(x) =
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

,

...

max zk(x) =
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

,

Subject to

x ∈ M
(s)
R

where M
(s)
R is defined as:

(2.5) M
(s)
R = {x ∈ Rn | A(s)x ≤ b(s), x ≥ 0}

In addition,

(2.6) A(s) =




A
...

a1

...
as




and b(s) =




b
...
b1

...
bs




are the original constraint matrix A and the right-hand side vector b, respectively,
with s-additional constraints, each corresponding to an efficient non-redundant cut
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in the form aix ≤ bi, where M
(s)
R = [M ] and for more details, the reader is referred

to [11].
Now, using the nonnegative weighted sum method [2], then problem (2.4) will

take the following form with a single-objective function:

(2.7)

(FMOINLFP) :

max
{

w1

(
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

)
+ w2

(
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

)
+ · · ·

+wk

(
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

)}

Subject to

x ∈ [M ].

3. Fuzzy Concepts and Notations

The fuzzy number is defined differently by many authors. The most frequently
used definition belongs to a trapezoidal fuzzy type as follows:

Definition 3.1 ([5]). It is appropriate to recall that a real fuzzy number P̃ , is a
continuous fuzzy subset from the real line R whose membership function µ

P̃
(P ) is

defined by:

1. A continuous mapping from R to the closed interval [0, 1],
2. µ

P̃
(P ) = 0 for all P ∈ (−∞, P1],

3. µ
P̃

(P ) is strictly increasing on [P1, P2],
4. µ

P̃
(P ) = 1 for all P ∈ [P2, P3],

5. µ
P̃

(P ) is strictly decreasing on [P3, P4],
6. µ

P̃
(P ) = 0 for all [P4,+∞).

Figure 1. illustrates the graph of a possible shape of a membership function of a

fuzzy number P̃ .

Figure 1. Membership function of a fuzzy number P̃

Here, the matrix of fuzzy parameters θ̃ involved in problem (FMOINLFP) is a
matrix of fuzzy numbers whose membership function is denoted by µ

θ̃
(θ).

In the following we give the definition of the α-level set or α-cut of the fuzzy

matrix θ̃.
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Definition 3.2 ([5]). The α-level set of the matrix of fuzzy parameters θ̃ in the

problem (FMOINLFP) is defined as the ordinary set Lα(θ̃) for which the degree of
its membership function exceeds the level α ∈ [0, 1], where

(3.1) Lα(θ̃) = {θ ∈ Rn | µ
θ̃
(θ) ≥ α}

For a certain degree α = α∗ = [0, 1], estimated by the decision maker. The problem
(FMOINLFP) (2.7) can be understood as the following nonfuzzy α-multiobjective
integer nonlinear fractional programming problem (α-MOINLFP) :

(3.2)

(α-MOINLFP) :

max
{

w1

(
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

)
+ w2

(
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

)
+ . . .

+wk

(
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

)}

Subject to

x ∈ M(θ),

where

M(θ) = {x ∈ Rn | A(s)x ≤ b(s), x ≥ 0, θ ∈ Lα(θ̃)}.

If should be emphasized here in the (α-MOINLFP) (3.2) above that the matrix of
parameters θ is treated as a matrix of decision variables rather than constants. De-
pending on the basic definition of the α-level set of the fuzzy numbers, we introduce
the concept of the α-efficient solution to the (α-MOINLFP) (3.2) in the following
definition.

Definition 3.3 ([5]). A point x∗ ∈ M(θ∗) is said to be an α-efficient solution to
problem(α-MOINLFP), if and only if there does not exist another x ∈ M(θ), θ ∈

Lα(θ̃) such that zl(x) ≥ zl(x
∗), (l = 1, 2, ..., k) with strict inequality holding for

at least one l, where the corresponding values of parameters θ∗ are called α-level
optimal parameters.

Throughout this paper, a membership function of the fuzzy matrix θ̃ in the fol-
lowing form will be elicited:

(3.3) µ
P̃

(P ) =





0, θ ≤ P1,

1 −
(

P−P2

P1−P2

)2

, P1 ≤ θ ≤ P2,

1, P2 ≤ θ ≤ P3,

1 −
(

P−P3

P4−P3

)2

, P3 ≤ θ ≤ P4,

0, otherwiae

Now, before we go any further, problem (α-MOINLFP) (3.2) can be rewritten as
follows:

(3.4)

(α-MOINLFP) :

max
{

w1

(
cT

1
x+θ̃T

1
x+α1

dT

1
x+β1

)
+ w2

(
cT

2
x+θ̃T

2
x+α2

dT

2
x+β2

)
+ . . .

+wk

(
cT

k
x+θ̃T

k
x+αk

dT

k
x+βk

)}
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Subject to

x ∈ M(θ) ={x ∈ Rn | A(s)x ≤ b(s), l
(0)
li ≤ θli ≤ L

(0)
li ,

(l = 1, 2, . . . , k), (i = 1, 2, . . . , n), x ≥ 0}

Note that the constraint θ ∈ Lα(θ̃) in problem (α-MOINLFP) (3.4) stated above
has been replaced by the equivalent one l0li ≤ θli ≤ L0

li where l0li and L0
li are the

lower and the upper bounds on the variables θli.
In what follows, a linearization procedure is suggested to deal with problem (3.4).

This procedure depends basically on the linearity nature of the trapezoidal mem-
bership function defined by (3.1) . On the other hand, we should report that a
different membership function in the non-linear case will require a modification in
the linearization process and this point is recommended to be handled as a future
research work.

4. Linearization Procedure (see [1])

The nonlinearity in the objective’s numerators of problem (2.6) can be treated
using the following transformation:

(4.1) γT
l = xiθ

T
li for each objective l, l = {1, 2, . . . , k}, i = {1, 2, . . . , n}

Consequently problem (2.6) becomes:

max
{

w1

(
cT

1
x+γT

1
x+α1

dT

1
x+β1

)
+ w2

(
cT

2
x+γT

2
x+α2

dT

2
x+β2

)
+ · · · + wk

(
cT

k
x+γT

k
x+αk

dT

k
x+βk

)}
(4.2)

Subject to

x ∈ M(θ) ={x ∈ Rn | A(s)x ≤ b(s), xil
T (0)
li ≤ γT

l ≤ xiL
T (0)
li ,

(l = 1, 2, . . . , k), (i ∈ J ⊆ (1, 2, . . . , n), x ≥ 0}

Using the parametric approach of Dinkelbaeh [4] and Jagannathan [7] for the scalar
fractional programming problem, we consider the following optimization problem:

(4.3) max





w1

(
(cT

1 x + γT
1 x + α1) − v1(d

T
1 x + β1)

)
+

w2

(
(cT

2 x + γT
2 x + α2) − v2(d

T
2 x + β2)

)
+ · · ·

· · · + wk

(
(cT

k x + γT
k x + αk) − vk(dT

k x + βk)
)





Subject to

x ∈ M(γ) ={x ∈ Rn | A(s)x ≤ b(s), xil
T (0)
li ≤ γT

l ≤ xiL
T (0)
li ,

(l = 1, 2, . . . , k), (i ∈ J ⊆ (1, 2, . . . , n), x ≥ 0}

where
∑k

l=1 = 1 and vl = zl(x
0
1, x

0
2, . . . , x

0
n).

Theorem 4.1 ([1]). The solution of the problem (4.3) can be obtained by solving
2r problems, r ≤ ń where r is the number of decision variables from the set J c for
which one of their coefficient whether in the objective functions or in the constraints
is fuzzy, where ń is the cardinality of J c.
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5. Solution algorithm

In this section, a solution algorithm to solve fuzzy multiobjective non-linear frac-
tional programming problem (FMOINLFP) is described in a series of steps. The
suggested algorithm can be summarized in the following manner:

Step 0. Characterize the set [M ]
(s)
R = [M ] (See [10, 11]),

Step 1. Use the weighted sum method [2] to convert the fuzzy non-linear multi-
objective fractional programming problem (2.4) to single-objective problem (2.7)

Step 2. Start with an initial α-level set degree α = α∗ = 0
Step 3. Choose

θ̃ =




θ̃11 θ̃12 . . . θ̃1n

θ̃21 θ̃22 . . . θ̃2n

. . . . . . . . . . . .

θ̃k1 θ̃k2 . . . θ̃kn


 ,

the matrix of the fuzzy parameters θ̃ in problem (FMOINLFP) (2.7), to elicit a
membership function satisfying assumptions (1)-(6) in Definition 1 in the form of
µ

θ̃
(θ).
Step 4. Convert problem (FMOINLFP) (2.7) into its nonfuzzy version (α-MOINLFP)

(3.4).
Step 5. Linearization Procedure:

(a) Let γT
l = xiθ

T
li for each objective l, l = {1, 2, . . . , k}, i = {1, 2, . . . , n} in the

objectivéı�s numerators of problem (3.4)
(b) Rewrite the problem ( α-MOINLFP) in the form of problem (4.2)
(c) Convert problem (α-MOINLFP) (4.2) by using the parametric approach of

Dinkelbaeh [4] and Jagannathan [7] for the scalar fractional programming
in the form of problem (4.3)

(d) Solve the 2r different problems by using LINGO [9] software to obtain 2r of
α-efficient solution to choose the required one.

Step 6. Set α = (α∗ + Step) ∈ [0, 1] and go to Step 2.
Step 7. Repeat the above procedure until the interval [0, 1] is fully exhausted.

Then, stop.

6. An Illustrative Example

In this section, an illustrative example is given to clarify the proposed solution
algorithm. This example is adapted from one appearing in Chergui and Moulaü [3]
and the LINGO [9] software package is used in the computational process.

The problem to be solved here is the following multiobjective integer nonlinear

fractional problem involving fuzzy vector of parameters θ̃ in the objective functions:

(FMOINLFP) :





max z1(x) = (1+2θ̃1)x1−4
−x2+3 ,

max z2(x) = −(2+θ̃2)x1+4
x2+1 ,

max z3(x) = −(1 + θ̃3)x1 + x2,
213
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Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1, x2 ≥ 0, and integers.

The convex hull M
(s)
R is given by:

[M ] = {x ∈ R2 | −x1 + 4x2 ≤ 0, 2x1 − x2 ≤ 8, x1 ≤ 4, x1, x2 ≥ 0}

where S = 1 an efficient Gomory cut: x1 ≤ 4 and then problem (FMOINLFP) can
be formulated as:

(FMOINLFP) :





max z1(x) = x1+2θ̃1x1−4
−x2+3 ,

max z2(x) = −2x1+θ̃2x1+4
x2+1 ,

max zk(x) = −(x1 − θ̃3)x1 + x2,

Subject to

x ∈ [M ]

Using the weighting method [2], the multiobjective nonlinear fractional programming
problem can be converted to a single-objective nonlinear fractional programming
problem as:

p1(w) : max = w1z1 + w2z2 + w3z3

Subject to
where

∑3
i=1 wi = 1. Therefore, the above problem will take the following form:

p1(w) : max =
{(

1
4

[
x1+2θ̃1x1−4

−x2+3

])
+

(
1
2

[
−2x1+θ̃2x1+4

x2+1

])

+
(

1
4

[
−x1 − θ̃3x1 + x2

])}

Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1, x2 ≥ 0

where w1 = 1
4 = w3, w2 = 1

2 .
By using the membership function to convert the fuzzy problem p1(w) to non-

fuzzy. Let α = 0.36. The membership function corresponding to the fuzzy numbers

θ̃1, θ̃2, θ̃3 are given by

µ
θ̃1

(θ1) =





0, θ1 ≤ P1,

1 −
(

θ1−P2

P1−P2

)2

, P1 ≤ θ1 ≤ P2,

1, P2 ≤ θ1 ≤ P3,

1 −
(

θ1−P3

P4−P3

)2

, P3 ≤ θ1 ≤ P4,

0, otherwiae
214
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µ
θ̃2

(θ2) =





0, θ2 ≤ P1,

1 −
(

θ2−P2

P1−P2

)2

, P1 ≤ θ2 ≤ P2,

1, P2 ≤ θ̃1 ≤ P3,

1 −
(

θ2−P3

P4−P3

)2

, P3 ≤ θ2 ≤ P4,

0, otherwiae

µ
θ̃3

(θ3) =





0, θ3 ≤ P1,

1 −
(

θ3−P2

P1−P2

)2

, P1 ≤ θ3 ≤ P2,

1, P2 ≤ θ3 ≤ P3,

1 −
(

θ3−P3

P4−P3

)2

, P3 ≤ θ3 ≤ P4,

0. otherwiae

Let also the fuzzy parameters θ̃1, θ̃2, θ̃3 are given by the following fuzzy numbers
listed in the table below:

P1 P2 P3 P4

θ1 0 0.25 0.75 1

θ2 0 0.5 0.75 1.25

θ3 0 0.3 0.6 0.9

It is easy to get:
0.05 ≤ θ1 ≤ 0.95

0.1 ≤ θ2 ≤ 1.15

0.06 ≤ θ3 ≤ 0.84

The problem will be

p2(w) : max =
{(

1
4

[
x1+2θ̃1x1−4

−x2+3

])
+

(
1
2

[
−2x1+θ̃2x1+4

x2+1

])

+
(

1
4

[
−x1 − θ̃3x1 + x2

])}

Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1, x2 ≥ 0

0.05 ≤ θ1 ≤ 0.95

0.1 ≤ θ2 ≤ 1.15

0.06 ≤ θ3 ≤ 0.84

Linearization technique:
Let γ1 = x1θ1, γ2 = x1θ2, γ3 = x1θ3. The problem p2(w) can be written as

max =
{(

1
4

[
x1+2γ1−4
−x2+3

])
+

(
1
2

[
−2x1−γ2+4

x2+1

])
+

(
1
4 [−x1 − γ3 + x2]

)}
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Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1, x2 ≥ 0

0.05x1 ≤ γ1 ≤ 0.95x1

0.1x1 ≤ γ2 ≤ 1.15x1

0.06x1 ≤ γ3 ≤ 0.84x1

By using the parametric approach of Dinkelbaeh [4] and Jagannathan [7], the above
problem will take the following form:

p3(w) : max =





(
1
4 [(x1 + 2γ1 − 4) − λ∗

1(−x2 + 3)]
)
+(

1
2 [(−2x1 − γ2 + 4) − λ∗

2(x2 + 1)]
)
+(

1
4 [−x1 − γ3 + x2]

)





Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1, x2 ≥ 0

0.05x1 ≤ γ1 ≤ 0.95x1

0.1x1 ≤ γ2 ≤ 1.15x1

0.06x1 ≤ γ3 ≤ 0.84x1

Starting with λ∗

1 = z1(0, 0, 0.05) = − 4
3 , λ∗

2 = z2(0, 0, 0.1) = 4
Case 1: Let x1 = 0 the problem can be written as:

p4(w) : max =
{(

1
4

[
(−4) −

(
− 4

3

)
(−x2 + 3)

])
+

(
1
2 [(4) − (4)(x2 + 1)]

)
+

(
1
4 [x2]

)}

Subject to
4x2 ≤ 0

x2 ≤ 8

x2 ≤ 0

p4(w) : max =
{(

− 1
3x2

)
− (2x2) +

(
1
4 [x2]

)}

Subject to
4x2 ≤ 0

x2 ≤ 8

x2 ≤ 0

By solving problem p4(w) the max = 0 at (x∗

1, x
∗

2) = (0, 0) substitute in p2(w) the
optimal solution will be 1.666667
Case 2: Let x1 > 0 the problem can be written as:

p3(w) : max =
{(

1
4

[
(x1 + 2γ1 − 4) −

(
− 4

3

)
(−x2 + 3)

])

+
(

1
2 [(−(2x1 + γ2) + 4) − (4)(x2 + 1)]

)
+

(
1
4 [−(x1 + γ3) + x2]

)}
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Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1 ≥ 1

x1, x2 ≥ 0

0.05x1 ≤ γ1 ≤ 0.95x1

0.1x1 ≤ γ2 ≤ 1.15x1

0.06x1 ≤ γ3 ≤ 0.84x1

p5(w) : max =
{(

1
4

[
(x1 + 2γ1 −

4
3x2

])
+

(
1
2 [(−2x1 − γ2 − 4x2]

)

+
(

1
4 [−(x1 + γ3) + x2]

)}

Subject to
−x1 + 4x2 ≤ 0

2x1 − x2 ≤ 8

x1 ≤ 4

x1 ≥ 1

x1, x2 ≥ 0

0.05x1 ≤ γ1 ≤ 0.95x1

0.1x1 ≤ γ2 ≤ 1.15x1

0.06x1 ≤ γ3 ≤ 0.84x1

Solving problem p5(w), we obtain max = −0.59 at (x∗

1, x
∗

2) = (1, 0) and then sub-
stituting in p2(w) the α-optimal solution will be 0.593333334 from the previous two
cases, we notice that the α-optimal solution of problem p2(w) is (0, 0, 0.95, 0.1, 0.06)
which gives the maximum value 1.666666667, on the other hand ,this is an α-efficient
solution for the (FMOINLFP) under consideration.

7. Conclusion

This paper has dealt with a fuzzified version of a multiobjective integer nonlin-
ear fractional programming problem (FMOINLFP) in which fuzzy parameters are
involved in the objective functions. In order to defuzzify this problem, the concept
of α-level set of the fuzzy number has been given. For obtaining an α-efficient so-
lution to the formulated problem (FMOINLPP), a linearization technique has been
proposed to develop the solution process.

Though the computational experience is limited, our algorithm appears to be
fairly efficient. Despite its simplicity, the proposed solution algorithm may be con-
sidered as evidence that a host of other fractional optimization problems can be
effectively tackled by solving a sequence of 2r feasibility problems.

In our opinion, the results of the illustrative example show that the nine digits
is achievable in the solution steps since, these result using our proposed algorithm
compared with direct LINGO software methodology will give the same solution in
less than 30 iterations while more than 300 iterations are carried out using LINGO.
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However, further points must be discussed in the area of (FMOINLPP) for differ-
ent values of α-level sets and the stability of the corresponding α-efficient solutions
should be investigated. It is recommended to suggest a solution algorithm to large-
scale fuzzy multiobjective integer nonlinear fractional programming problems. It
should therefore prove worthwhile to examine the convergence of the developed al-
gorithm in this paper.

218



Omar M. Saad et al./Annals of Fuzzy Mathematics and Informatics 1 (2011), No. 2, 207–220

Figure 2. Flowchart for solution algorithm
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